HOL4P4.EXE: A Formally Verified P4 Software
Switch

Didrik Lundberg!»2[0000-0001-9921-3257] 41,4 Roberto
Guanciale!-3[0000—0002—8069—6495]

! KTH Royal Institute of Technology, Lindstedtsvigen 5, 100 44 Stockholm, Sweden
{didrikl, robertog}@kth.se
2 Saab AB, Nettovigen 6, 175 41 Jarfilla, Sweden
3 Digital Futures, Osquars Backe 5, 100 44 Stockholm, Sweden

Abstract. The emergence of programmable network elements and their
usage in critical infrastructure is increasing the demand for formal guar-
antees of their correctness. This paper presents the first P4 software
switch connected by proof to a formal semantics. This is accomplished
by adjusting and optimizing the HOL4P4 semantics to create an efficient
interpreter that can be compiled using the verified CakeML compiler.
We demonstrate practical performance in a set of experiments, achieving
several orders of magnitude improvement in throughput over existing
semantics-based interpreters, with only small performance penalties com-
pared to the BMv2 reference switch written in C++.

Keywords: P4, Theorem Proving, Formal Verification

1 Introduction

Software-defined networking gives hardware owners the power to fine-tune the
data plane processing in a protocol-independent manner. The typical use case
for leveraging this flexibility is to gain a rapid development cycle (as opposed to
that of non-programmable hardware) and to support specialized infrastructure
with custom performance and security solutions. The P4 language is the de facto
standard for programmable network elements, and P4 compilers target a variety
of platforms from terabit-bandwidth switches [§] to network interface controller
(NIC) cards. In addition, P4 programs can run on commodity CPUs by various
means [21].

When executing a high-level language like P4, the compilers, interpreters,
and runtimes involved may deviate from the language’s intended semantics or
introduce bugs, especially if they are complex, written in an unsafe language, and
heavily performance-optimized. The goal of this work is to address these problems
by developing a formally verified P4 software switch, hereafter referred to as
HOL4P4.EXEEL A wverified software switch is a provably correct implementation of
P4 programs and architecture models according to a high-level formal semantics.

4 The source code is available in the HOL4P4 Github repository https://github.com/
kth-step/HOL4P4 at the tag VSTTE2025.


https://github.com/kth-step/HOL4P4
https://github.com/kth-step/HOL4P4

2 D. Lundberg et al.

Our main strategy is to compile the HOL4P4 semantics, a formal semantics
of the P4 language developed in the HOL4 interactive theorem prover, into
an executable interpreter using the CakeML verified compiler. This enables us
to bridge the gap between formal verification and practical deployment of P4
software switches. This paper makes four key contributions:

First, we modify the original HOL4P4 semantics to be compatible with
CakeML extraction and update the symbolic executor to enable end-to-end
proofs of program behavior at the machine code level.

Second, we profile the resulting interpreter and identify several performance
bottlenecks in the CakeML-generated code. Guided by these insights, we develop
an optimized version that significantly reduces extraction time and yields a more
efficient binary. This offers practical guidance on building performant interpreters
via executable semantics.

Third, we extend the verified interpreter with a raw-socket FFI, resulting in a
usable software switch. We further integrate it with Mininet [10], demonstrating
that HOL4P4.EXE can operate within realistic testing environments.

Finally, We evaluate HOL4P4.EXE side-by-side with existing solutions, show-
ing that it outperforms current semantics-based implementations and scales well
with increasing packet sizes.

HOL4P4.EXE is the first P4 software switch with formal verification guar-
antees. Our results demonstrate that verified systems can achieve practical
performance, advancing the goal of high-assurance networking.

2 Related Work

We use HOL4P4 [I] as formal semantics of P4. HOL4P4 is a heapless semantics
written in the interactive theorem prover (ITP) HOL4 and has an executable
formulation, that is, a version that can be evaluated in the ITP, computing
the result of running a P4 program. To facilitate verification of P4 programs,
HOLA4P4 has been extended with a symbolic executor [I4]. In this work we also
use CakeML [9], a verified compiler implemented in HOL4 which compiles the
CakeML language, a dialect of Standard ML. CakeML is also capable of verified
extraction of CakeML code from HOL4 definitions.

There are a number of software switches that enable running a P4 program
on a regular CPU. BMv2 [I8] is a “reference P4 software switch implementation”.
However, unlike HOL4P4.EXE, BMv2 is not based on a formal semantics. Petr4 [4]
is a P4 semantics and formalization in OCaml. There exists a version of petr4
which can also be compiled and used as a software switch, e.g. with Mininet [6],
making it directly comparable to HOL4P4.EXE. The petr4 semantics has also
been ported to the Coq ITP [I19J26], however there is no formal connection
between the petr4 software switch and the ITP semantics.

The Coq ecosystem also includes the verified compiler CompCert [10], and a
fully verified C code extraction mechanism from Coq, which does not currently
exist, would offer a similar pathway to a verified switch as the one presented in
this paper.



HOL4P4.EXE: A Formally Verified P4 Software Switch 3

PfComp [3] is another work that applies both theorem-proving and verified
compilation to networking. It uses Coq to construct a verified compiler from
firewall policies to Clight, which can in turn be compiled using CompCert. In
contrast to the P4 programs used to program HOL4P4.EXE, the policy language
of PfComp does not include packet parsing, modification and deparsing, nor
outcomes beyond acceptance or rejection.

In addition to the ITP-based verification tools [BIT926l2714], multiple non-
proof-producing tools have been made to verify P4 programs [23JI7ITT]. Verifica-
tion tools are complementary to a verified switch implementation, whose main
purpose is to transfer verified properties from source code to machine code.

3 System Description

The core of HOL4P4.EXE is a verified P4 interpreter, obtained by adapting the
existing HOL4P4 semantics and architectural models (V1Model and eBPF), and
then compiling the semantics function via the verified CakeML compiler. The
main challenge lies in refining the semantics to support CakeML extraction while
preserving the soundness of the verification tools, in identifying bottlenecks and
optimizations that can guide the development of efficient executable semantics,
and integrating the interpreter in a way that minimizes the trusted computing
base (T'CB). The version of the semantics with the optimizations described in
Section [3.1] is called the optimized semantics in the rest of the paper. We have
also implemented in HOL4 a translator from the abstract syntax tree (AST) of
standard HOL4P4 programs and initial states to those of the optimized semantics.

Several aspects of the HOL4P4 semantics make it a good candidate as basis
for our executable interpreter. In particular, the semantics models the specific P4
calling convention, which forbids cross-function variable references, via a heapless
design: as opposed to allocating local variables in a global heap, HOL4P4 keeps
them in function frames that are disposed of upon function return.

Figure [1| shows an overview of HOL4P4.EXE. The verified interpreter is used
together with a wrapper program in CakeML and a foreign function interface
(FFI) library to communicate over Linux raw sockets to obtain a usable software
switch. This paper’s code contributions are shown in green: the architecture
models and semantics are adapted from prior work. The parts below the dashed
line exist inside the theorem prover HOL4, while the parts above it are outside.

Note that the P4 program and the table configurations are statically embedded
in the final HOL4P4.EXE executable. This is achieved by extracting the HOL4
term representing the AST of the program to CakeML, which is then compiled
into machine code that reconstructs the same AST at start time. As a result,
the interpreter begins execution with the target P4 program already parsed and
ready for packet processing.

From a usability perspective, standard P4 programs can be translated into
HOLA4P4 programs by using the .p4 parser functionality of petrd[4] and feeding
the JSON result to the HOL4P4 import tool. Also, while this paper only describes



4 D. Lundberg et al.

Raw Socket C
FE| \— gcc P HOL4P4 EXE

Architecture T
Models . CakeML
CakeML Compiler Wrapper

/ ~
‘ HOL4P4 ProgramJ ‘ HOLA4P4 Tables J

HOL4P4
Semantics

Fig.1: HOL4P4.EXE system overview

compilation to x86, the HOL4P4.EXE toolchain supports compilation to the
RISC-V and ARMvS8 ISAs.

3.1 Refining the Semantics for CakeML

In order to make extraction to CakeML from HOL4 possible, all instances of
Hilbert choice were removed from the semantics. The Hilbert choice was initially
used for indefinite values of uninitialised variables. The resulting semantics zeroes
all new variables, which is sound with respect to the P4 specification and indeed
guaranteed by some P4 platforms. This stricter initialisation scheme preserves
security properties proved by the symbolic executor, but when used as a simulator,
the software switch may have more restricted behaviour than generally allowed.
Moreover, the partial function definitions allowed by HOL4 were replaced by
option-type functions or guarded behind checks. Partial functions may also be
extractable by CakeML, but require manual proofs showing that they always
yield results where they are used. A quirk of P4 is the heavy usage of bitstrings of
non-standard widths (e.g., 3 or 11) and operations on these. To be able to extract
the semantics for arithmetic, this was rewritten to using just bitstrings and
numbers instead of fixed-width word types. The rarity of numerical computations
in P4 programs means that trading off performance for generality here is not
significant for overall performance in practice.

Optimized semantics For increasing performance, all string identifiers in the
semantics and architecture models (variable names, function names, field names,
parser state names, table names and string constants) were replaced by native-size
words, depending on compilation target: typically 64 bits, with 32 and 16 also
supported. The complete evaluation is in Section [d] note that the comparisons
here use the same test setup.

This led to around 60% increased throughput and 30% lowered latency, fairly
consistent over different programs. Most extraction times stayed constant, with
only a small 20% decrease in extraction time for the AST of the largest program.
In our experiments, the compilation step of HOL4P4.EXE always stayed under



HOL4P4.EXE: A Formally Verified P4 Software Switch 5

20s for all tested programs except for the string version of the largest program
in Section [, which took 5m. The heapless design of the HOL4P4 semantics
means that many small variable maps are used instead of one large one. Here,
the asymptotic benefits of efficient implementations like red-black maps become
less important compared to the association lists used by HOL4P4. However, the
relative speedup gained by switching identifiers from strings to native-length
words is greater when using association lists, since they require more identifier
comparisons per lookup.

Another important optimization was the on-demand conversion of byte arrays
to the bit representation used by HOL4P4. Since the raw socket FFI yields
incoming packets as byte lists, and since only the headers (and not the data
payload) is supposed to affect the program, it is more efficient and scalable to
only convert the necessary bytes to bits when extracting headers and vice versa
when emitting. This led to 4x the throughput of the unoptimized version for
1518-byte packets, with almost indistinguishable throughput for 64-byte packets.

The most performance-critical operation in P4 programs is table matching,
where, e.g., I[P addresses are matched against table entries, which may include
ranges and bit masks. The HOL4P4 semantics performs these operations using
the same bitstring-based definitions written for the arithmetic semantics: writing
a separate implementation using 64-bit word comparisons reduced performance by
half when matching against tables with 1000 range-type entries. This suggests that
at least on x86-64, the HOL4P4-style bitstring comparisons are more efficient
than comparisons from HOL4’s theory of machine words when compiled by
CakeML.

3.2 Formal Guarantees

The guarantees of CakeML apply to two stages: CakeML code extraction from
HOLA4 definitions and binary compilation from CakeML code.

The HOL4 definitions extracted to CakeML consist of the entire semantics,
the architecture models as well as the AST of the P4 program to run: in the
wrapper program, only the top-level semantics function cake_exec is used (on
the extracted prog and state, with incoming packets added). Theorem [1] states
the correctness of the extraction relative to a correspondence between CakeML
and HOL4 values [I5]. This step is shown with red arrows in Figure

Theorem 1. When given an application of the Cake ML HOL4P4 semantics to
arguments corresponding to HOL4 terms, the CakeML operational semantics will
terminate with a value that corresponds to the application of the HOL4 HOL4P)
semantics to those terms.

The compilation guarantees also preserve the semantics of the CakeML
wrapper code, as stated in Theorem 2| [9I24], a simplified and specialised version
of the top-level correctness theorem of CakeML. This property relies on a few
assumptions: notably, that any FFI functions written externally obey CakeML’s
requirements, specifically that they only write to their proper memory regions



6 D. Lundberg et al.

exec(prog, state, n)
HOL4-Fo-CakeML code ° o
extraction
cake_wrapper ‘}
cake_exec(prog, state, n)
C FFI > » C FFI
@
gcc _ @ |
CakeML y HOL4P4.EXE
\ bin_wrapper
Raw bin_exec(prog, state, n) Raw
= = =t Socket > P Socket = — =P
Input o———0 Output

Fig. 2: HOL4P4.EXE compilation overview

when running the binary. Regarding memory, note that CakeML includes garbage
collection that is formally verified to uphold the compiler correctness theorem.

Theorem 2 (Top-level compiler correctness). The HOL/P4.EXE binary
produced by a successful evaluation of the Cake ML compiler function will either

— behave exactly according to the observable behaviour of the CakeML source
code according to its semantics, or

— behave the same as the CakeML source code up to some point at which it
terminates with an out-of-memory error.

Component Written in ~ Size (LoC)
FFI C 551
Wrapper CakeML 521
HOL4P4 executable semantics HOL4 1650
Architecture models HOL4 1331
Auxiliary definitions HOL4 808

3769

Table 1: Sizes of HOL4P4.EXE components

The fact that we not only enabled CakeML extraction of the executable
semantics but also updated the metatheory and symbolic executor of Lundberg et
al. [T4] to accommodate these changes, means we can use the symbolic executor
on the exact same semantics and programs that then are deployed in the verified
P4 software switch. Since the verified compiler preserves functional properties,
this specifically means that it preserves properties proved using the symbolic
executor. Accordingly, an end-to-end proof is obtained in the sense that the



HOL4P4.EXE: A Formally Verified P4 Software Switch 7

binary fragment running the P4 program also obeys the high-level properties you
have proved using the symbolic executor.

3.3 Implementation and TCB

Information about the various components is shown in Table [T Code sizes
are calculated using cloc and provide an indication of the size of the TCB.
Components in the TCB require different degrees of trust; the FFI and the
system calls have to be wholly trusted, whereas the CakeML compiler ensures
the wrapper behaves according to the CakeML semantics, assuming the FFI is
well-behaved. The correspondence in Theorem [I] could also be considered part of
the TCB.

In theory, the FFI could get stuck in an infinite loop, or completely upend
the other guarantees by writing to arbitrary memory locations. However, the raw
socket FFI code size is very small, and the dependencies consist of compile-time
constants and structure definitions in addition to system calls, contributing
almost no additional executable code in the final binary. In addition to the listed
components, standard library functions of the respective languages that are used,
Linux, and its device drivers should also be considered part of the TCB.

Notably, if a P4 program is proven to satisfy a property with respect to the
HOL4P4 semantics, verified compilation ensures that this property is preserved
in the final binary. From the perspective of this property, the semantics and
architecture model are no longer part of the TCB, as the compilation correctness
theorem guarantees that the binary faithfully implements the semantics, which
has been proved to guarantee the property.

The contributions in this paper also consist of changes to the existing HOL4P4
theories and tools: approximately 20000 lines of code (LoC) were added in total,
according to a Git diff analysis. Around 25% of these are changes to existing
theories and libraries.

For comparison, the petr4 OCaml model can be estimated to be about 12000
LOCE| and the BMv2 model about 16500 Lodﬂ Note that these rely on the OCaml
and C++ compilers, respectively, as well as any external libraries used.

4 Performance Comparisons

The main goal of this section is to isolate aspects of operation in order to obtain
performance bounds and identify or rule out potential bottlenecks. Unless noted
otherwise, all HOL4P4.EXE results refer to the version using the optimized
semantics.

To evaluate our system experimentally, we have selected the following P4
programs, all using the V1Model architecture:

® BEstimated using cloc *.ml on the 1ib directory of the latest release (0.1.3).
5 Estimated using cloc *.c *.cpp *.h on the src/bm_sim directory of the latest
release (0.15.0).



8 D. Lundberg et al.

1. port_swap.p4: This small program extracts and emits Ethernet and IPv4
headers unchanged, and looks at the ingress port: if it is 1, the egress
port is set to 2, otherwise to 1. This is meant to illustrate the baseline
cost of P4 interpretation and the overhead of the basic V1Model pipeline
implementation.

2. vss-example.p4: A medium-sized P4 program from the “Very Simple Switch”
(VSS) example of the P4 Specification [25] which performs basic switch
functionality. For these tests, it has been adapted to the V1Model architecture.

3. fabric_border_router.p4: A larger (2816 LoC) real-world industry pro-
gram used at Google [22]. Note that HOL4P4.EXE only has placeholder
models for timing-dependent externs such as meters whose real-world imple-
mentations rely on system clocks.

The sizes of the programs cover a range of P4 program sizes from minimal
to real-world industry applications, and so are suitable to determine scalability.
To provide context for these measurements, the minimum bandwidth listed
under Zoom system requirements for a 720p HD video call is 1.2Mbps, while the
minimum for a voice call is 80kbps [29]. Netflix recommends 5Mbps or higher for
1080p video streaming [16].

All measurements were performed on a laptop with an Intel®) i7-8550U CPU.
This involved first setting up small virtual networks in a Mininet-like fashion
and configuring the environment to maximize the accuracy of the measurements,
after which Pktgen-DPDK [28] was used to run test suites scripted in Lua

The closest comparable (but unverified) tool to HOL4P4.EXE is petr4®| the
only other software switch based on a formal semantics known to the authors,
written in OCaml. HOL4P4.EXE consistently outperforms petr4, sometimes
by several orders of magnitude. While HOL4P4.EXE does not yet match the
performance of the reference software switch BMv2, implemented in C++, it
shows that the formal guarantees can be achieved without sacrificing real-world
usability.

4.1 Extraction and Compilation Measurements

The verified code extraction of the semantics and the V1Model architecture
model takes 10m, while extraction of the vss-example.p4 program takes 4m35s
with no additional table entries and 5m with 100 additional entries. Note that the
extraction of table entries can be separated from that of the program, so that re-
compiling the same switch with new table entries can be done in seconds. The code
extraction of port_swap.p4 takes 3m25s and that of fabric_border_router.p4
6m. The final step of compilation to binary only takes a few seconds.

" The testbed is available in the Github repository |https://github.com /kth-step/
swswitch-perf| at the tag VSTTE2025.

® Using the Mininet-capable version in the branch mininet-integration that was
presented at CAV 2021 [6]. Printing of debug messages and related calculations were
commented out in the source code to increase performance.


https://github.com/kth-step/swswitch-perf
https://github.com/kth-step/swswitch-perf

HOL4P4.EXE: A Formally Verified P4 Software Switch 9

The BMv2 binary is 2.5 MB and the petr4 binary is 27.5 MB. For port_swap . p4,
the HOL4P4.EXE binary is 970kB, for vss-example.p4 it is 1.1 MB and for
fabric_border_router.p4 2.0 MB. Notably, since the program is linked in the
binary instead of parsed at run-time (as for petrd and BMv2), the HOL4P4.EXE
size increases with the size of the P4 program that is used, but remains smaller
than for the alternatives.

4.2 Zero-load UDP Latency

1,000 10°
—~ 3,500 |- Direct Veth Pair | Z ="
=, CakeML Baseline Q &
\; 3,000 | ——BMmv2 1 = ~
— HOL4P4.EXE = 10 3 5
:;E 2’500 | —— HOL4P4 E (unopt.) 7 g 10 é‘
£ 2,000 [——rep A < T HOLIPLERE (wort) ]
T 1,500 z 3 T 2
< 1,000 2 01 =
é ; 1 <) 101
g 500 - | | | | |
0 ; ; ; 64 128 256 512 1024 1280 1518
500 1,000 1,500 Packet size (bytes)

Packet size (bytes) .
(b) Throughput  comparison  for

(a) Zero-load latency comparison for port_swap.p4. Note the logarithmic

port_swap.p4 scale on the y-axis.
150 ¢ 3 - 300
— Seeaaal, . 110,000 . —— HOL4P4.EXE
3 BMv2 T Tmea - =z A "
el HOL4P4.EXE =3 Q0 o
= 100 |- HOLAPA.EXE (unopt.) & = 200 2
+ = - b=
= <% = 2
”?o - 5,000 = ”t% =
2 50| 5 2 100 3
s El- E
= - =
0 . - =5 0 I | | | |
64 128 256 512 1024 1280 151% 64 128 256 512 1024 1280 151%
Packet size (bytes) Packet size (bytes)

(c) Throughput comparison for (d) Throughput of HOL4P4.EXE for
vss-example.p4 fabric_border_router.p4

Fig. 3: Performance measurements. Solid and dashed lines are scaled according
to the left and right y-axes, respectively.

The zero-load latency of different P4-programmable software switch solutions
running port_swap.p4 is shown in Figure All these communicate over Unix
raw sockets using the same test setup. Two other implementations are provided
for comparison: a direct veth pair (virtual network cables linking Linux network



10 D. Lundberg et al.

namespaces ), which has a constant 2 ps latency; and the baseline CakeML program,
which simply uses the raw socket FFI to forward a packet like port_swap.p4
would. The baseline program has a constant latency of around 120 ps, which can
be considered a lower bound for the latency that could be achieved by verified
compilation using the same CakeML FFI.

Among the software switches, BMv2 achieves a roughly constant latency of
200 ps regardless of packet size, whereas both petr4d and HOL4P4.EXE have a
linearly increasing latency, with HOL4P4.EXE almost achieving constant latency.
The performance of petrd seems to slowly degrade the longer the switch is running,
implying issues with garbage collection. The cost of the HOL4P4.EXE semantics
interpreting port_swap.p4 is roughly 520 s, which is obtained by subtracting
the latency of the CakeML baseline solution from that of HOL4P4.EXE.

The conclusions from measuring zero-load latency for vss-example.p4 are
similar to those from the port_swap.p4 case, with BMv2 and HOL4P4.EXE
achieving a near-constant 360 and 1400 s, respectively, and petr4 scaling from
around 2400 to 14000 ps. The large fabric_border_router.p4 program incurs
a larger latency of 16.5ms when using HOL4P4.EXE.

We performed throughput testing using an RFC2544-derived method. The
results for port_swap.p4 are shown in Figure Due to the large performance
differences between our approach and petr4 (multiple orders of magnitude), we
used a logarithmic scale to better visualize both datasets in the same graph. From
this, we observe that HOL4P4.EXE achieves around 3 Mbps for the 64-byte case
and 58 Mbps for the 1518-byte case. In comparison, petr4d achieves no more than
0.15Mbps in the best case - three orders of magnitude below HOL4P4.EXE.

The throughput results of the VSS example, shown in Figure are similar.
The HOL4P4.EXE maximum throughput is around 18 Mbps, with BMv2’s ad-
vantage increasing somewhat at 117 Mbps. The throughput of petrd was too low
to accurately measure with the lowest packet generation rates of Pktgen-DPDK,
hence its absence from Figure and Figure [3d] BMv2 was not able to run
fabric_border_router.p4, and the unoptimized version of HOL4P4.EXE had
too low throughput.

4.3 Table Usage

In order to benchmark performance over different table sizes, the vss-example.p4
program was used with different numbers of random, non-matching, non-overlapping
entries (32-bit IPv4 addresses) inserted before the matching entries in an existing
table. The packet size for this test was 1518 bytes. BMv2 manages to keep latency
roughly constant, while each additional table entry contributes around 3 s for
HOL4P4.EXE and 1.6 ps for petr4.

5 Conclusions and Future Work

We have presented HOL4P4.EXE, the first P4 software switch built with for-
mal correctness guarantees, and demonstrated that it outperforms a previous



HOL4P4.EXE: A Formally Verified P4 Software Switch 11

semantics-based solution by orders of magnitude and fulfils minimum require-
ments for practical use. In summary, efficient prototype trusted execution can
be achieved via verified compilation of executable semantics as long as the
optimizations are in place.

A formal proof that the optimized version of the HOL4P4 semantics preserves
the original semantics under transformation to the optimized state is currently
in progress. Also, we could prove the CakeML wrapper functionally correct by
using the existing characteristic formulae-based tools for CakeML [7I2]. Our
experimental results in Figure [Ba] show promise that future CakeML-based
verified compilation techniques that do not rely on compiling an interpreter could
outperform BMv2. Firstly, the virtual loop-freeness of P4 programs means one
could take the result of symbolic execution [I4] and use it to define a function in
HOL4 with the symbolic input as parameter, which is then extracted to CakeML
(the “CakeML baseline” graph in Figure [3a)is from an unverified version of this
approach). Secondly, one could use the HOL4P4 semantics to write a verified
compiler to another language, for which there already exists a verified compiler:
ideal candidates for this are the low-level systems language Pancake [20] or
Verilog [I3l12]. However, this approach might require a larger proof effort.

Acknowledgments. This work was in part financially supported by Digital Futures,
and in part by the SEMLA project financed by Vinnova (Sweden’s Innovation Agency).
We would also like to thank Magnus Myreen for valuable correspondence regarding the
usage of CakeML.

References

1. Alshnakat, A., Lundberg, D., Guanciale, R., Dam, M.: HOL4P4: Mechanized
small-step semantics for P4. Proceedings of the ACM on Programming Languages
8(OOPSLAL1), 223-249 (2024). [https://doi.org/10.1145 /3649819

2. Aman Pohjola, J., Rostedt, H., Myreen, M.O.: Characteristic formulae for liveness
properties of non-terminating CakeML programs. In: 10th International Conference
on Interactive Theorem Proving (ITP 2019). pp. 32-1 (2019). https://doi.org/
10.4230/LIPIcs.ITP.2019.32

3. Chavanon, C., Besson, F., Ninet, T.: Pfcomp: A verified compiler for packet filtering
leveraging binary decision diagrams. In: Proceedings of the 13th ACM SIGPLAN
International Conference on Certified Programs and Proofs. p. 89-102. CPP 2024
(2024). |https://doi.org/10.1145/3636501.3636954

4. Doenges, R., Arashloo, M.T., Bautista, S., Chang, A., Ni, N., Parkinson, S., Peterson,
R., Solko-Breslin, A., Xu, A., Foster, N.: Petr4: formal foundations for P4 data planes.
Proc. ACM Program. Lang. 5(POPL) (2021). https://doi.org/10.1145/3434322

5. Doenges, R., Kappé, T., Sarracino, J., Foster, N., Morrisett, G.: Leapfrog: Certified
equivalence for protocol parsers. In: Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation.
p. 950-965. PLDI 2022 (2022). [https://doi.org/10.1145/3519939.3523715

6. Foster, N., Tahmasbi Arashloo, M., Parkinson, S.: CAV’21 P4 verification tutorial
(2021), https://github.com/cornell-netlab /cav21-tutorial


https://doi.org/10.1145/3649819
https://doi.org/10.1145/3649819
https://doi.org/10.4230/LIPIcs.ITP.2019.32
https://doi.org/10.4230/LIPIcs.ITP.2019.32
https://doi.org/10.4230/LIPIcs.ITP.2019.32
https://doi.org/10.4230/LIPIcs.ITP.2019.32
https://doi.org/10.1145/3636501.3636954
https://doi.org/10.1145/3636501.3636954
https://doi.org/10.1145/3434322
https://doi.org/10.1145/3434322
https://doi.org/10.1145/3519939.3523715
https://doi.org/10.1145/3519939.3523715
https://github.com/cornell-netlab/cav21-tutorial

12

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

D. Lundberg et al.

Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified characteristic formulae
for CakeML. In: Programming Languages and Systems. pp. 584-610 (2017). https:
//doi.org/10.1007/978-3-662-54434-1 22

Intel Corporation: P4,, Intel® Tofino” native architecture - public ver-
sion (2021), https://github.com/barefootnetworks/Open-Tofino/blob/master/
PUBLIC _Tofino-Native- Arch.pdf

. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-

tation of ML. SIGPLAN Not. 49(1), 179-191 (2014). https://doi.org/10.1145/
2578855.2535841

Leroy, X., Blazy, S., Kéastner, D., Schommer, B., Pister, M., Ferdinand, C.: CompCert
- A Formally Verified Optimizing Compiler. In: ERTS 2016: Embedded Real Time
Software and Systems, 8th European Congress (2016), https://inria.hal.science/
hal-01238879

Liu, J., Hallahan, W., Schlesinger, C., Sharif, M., Lee, J., Soulé, R., Wang, H.,
Cagcaval, C., McKeown, N., Foster, N.: p4v: Practical verification for programmable
data planes. In: Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication. p. 490-503. SIGCOMM ’18 (2018). https://doi.org)
10.1145/3230543.3230582

Loow, A.: Lutsig: a verified Verilog compiler for verified circuit development. In: Pro-
ceedings of the 10th ACM SIGPLAN International Conference on Certified Programs
and Proofs. p. 46-60. CPP 2021 (2021). https://doi.org/10.1145/3437992.3439916
Loow, A., Myreen, M.O.: A proof-producing translator for Verilog development
in HOL. In: 2019 IEEE/ACM 7th International Conference on Formal Methods
in Software Engineering (FormaliSE). pp. 99-108 (2019). https://doi.org/10.1109/
FormaliSE.2019.00020

Lundberg, D., Guanciale, R., Dam, M.: Proof-producing symbolic execution for
P4. In: Verified Software. Theories, Tools and Experiments. pp. 70-83 (2025).
https://doi.org/10.1007/978-3-031-86695-1 5

Myreen, M.O., Owens, S.: Proof-producing synthesis of ML from higher-order
logic. In: Proceedings of the 17th ACM SIGPLAN International Conference on
Functional Programming. p. 115-126. ICFP ’12 (2012). https://doi.org/10.1145)
2364527.2364545

Netflix, Inc.: Netflix-recommended internet speeds (2025), |https://help.netflix.com/
en/node/306

Notzli, A., Khan, J., Fingerhut, A., Barrett, C., Athanas, P.: P4pktgen: Automated
test case generation for P4 programs. In: Proceedings of the Symposium on SDN
Research. pp. 1-7 (2018). https://doi.org/10.1145/3185467.3185497

P4 Language Consortium: Behavioral model (bmv2) (2025), https://github.com/
p4lang/behavioral-model

Peterson, R., Campbell, E.H., Chen, J., Isak, N., Shyu, C., Doenges, R., Ataei, P.,
Foster, N.: P4Cub: A little language for big routers. In: Proceedings of the 12th
ACM SIGPLAN International Conference on Certified Programs and Proofs. pp.
303-319 (2023). https://doi.org/10.1145 /3554345

Aman Pohjola, J., Syeda, H.T., Tanaka, M., Winter, K., Sau, T.W., Nott, B., Ung,
T.T., McLaughlin, C., Seassau, R., Myreen, M.O., Norrish, M., Heiser, G.: Pancake:
Verified systems programming made sweeter. In: Proceedings of the 12th Workshop
on Programming Languages and Operating Systems. p. 1-9. PLOS ’23 (2023).
https://doi.org/10.1145,/3623759.3624544

Shahbaz, M., Choi, S., Pfaff, B., Kim, C., Feamster, N., McKeown, N., Rexford,
J.: Pisces: A programmable, protocol-independent software switch. In: Proceedings


https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/978-3-662-54434-1_22
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1145/2578855.2535841
https://inria.hal.science/hal-01238879
https://inria.hal.science/hal-01238879
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3437992.3439916
https://doi.org/10.1145/3437992.3439916
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1007/978-3-031-86695-1_5
https://doi.org/10.1007/978-3-031-86695-1_5
https://doi.org/10.1145/2364527.2364545
https://doi.org/10.1145/2364527.2364545
https://doi.org/10.1145/2364527.2364545
https://doi.org/10.1145/2364527.2364545
https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
https://doi.org/10.1145/3185467.3185497
https://doi.org/10.1145/3185467.3185497
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://doi.org/10.1145/3554345
https://doi.org/10.1145/3554345
https://doi.org/10.1145/3623759.3624544
https://doi.org/10.1145/3623759.3624544

22.

23.

24.

25.

26.

27.

28.

29.

HOL4P4.EXE: A Formally Verified P4 Software Switch 13

of the 2016 ACM SIGCOMM Conference. p. 525-538. SIGCOMM ’16 (2016).
https://doi.org/10.1145,/2934872.2934886

SONiC Foundation: PINS infrastructure (2025), https://github.com/sonic-net/
sonic-pins

Stoenescu, R., Dumitrescu, D., Popovici, M., Negreanu, L., Raiciu, C.: Debugging
P4 programs with Vera. In: Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. pp. 518-532 (2018). |https://doi.org/
10.1145/3230543.3230548

Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: The
verified CakeML compiler backend. Journal of Functional Programming 29 (2019).
https://doi.org/10.1017/S0956796818000229

The P4 Language Consortium: P46 language specification (2024), https://p4.org/
wp-content /uploads/2024 /10 /P4-16-spec-v1.2.5.html

Wang, Q., Pan, M., Wang, S., Doenges, R., Beringer, L., Appel, A.W.: Foundational
verification of stateful P4 packet processing. In: 14th International Conference on
Interactive Theorem Proving (ITP 2023). Schloss-Dagstuhl-Leibniz Zentrum fiir
Informatik (2023). https://doi.org/10.4230/LIPIcs.ITP.2023.32

Wang, S., Pan, M., Appel, A.W.: Comprehensive verification of packet processing
(2024). |https://doi.org/10.48550 /arXiv.2412.19908

Wiles, K.: Pktgen - traffic generator powered by DPDK (2025), https://github.com/
pktgen /Pktgen-DPDK

Zoom Communications, Inc.: Zoom system requirements: Windows, macOS, Linux
(2025), |https://support.zoom.com/hc/en/article?id=zm_kb&sysparm article=
KB0060748


https://doi.org/10.1145/2934872.2934886
https://doi.org/10.1145/2934872.2934886
https://github.com/sonic-net/sonic-pins
https://github.com/sonic-net/sonic-pins
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1017/S0956796818000229
https://p4.org/wp-content/uploads/2024/10/P4-16-spec-v1.2.5.html
https://p4.org/wp-content/uploads/2024/10/P4-16-spec-v1.2.5.html
https://doi.org/10.4230/LIPIcs.ITP.2023.32
https://doi.org/10.4230/LIPIcs.ITP.2023.32
https://doi.org/10.48550/arXiv.2412.19908
https://doi.org/10.48550/arXiv.2412.19908
https://github.com/pktgen/Pktgen-DPDK
https://github.com/pktgen/Pktgen-DPDK
https://support.zoom.com/hc/en/article?id=zm_kb&sysparm_article=KB0060748
https://support.zoom.com/hc/en/article?id=zm_kb&sysparm_article=KB0060748

	HOL4P4.EXE: A Formally Verified P4 Software Switch

